Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Trop Med Health ; 50(1): 30, 2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1817291

ABSTRACT

The coronavirus disease 2019 (COVID 19) pandemic continues to pose a threat to global health. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) has spread rapidly worldwide and became dominant in many countries. A natural 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC) has demonstrated antiviral activity in Wuhan, Alpha, Beta, Gamma, and Delta variants of SARS-CoV-2 infections in vitro. In this study, we report antiviral activity of 5-ALA, 5-ALA with SFC led to IC50 of 329 and 765/191, respectively after infection with Omicron variant of SARS-CoV-2 in vitro. Our finding suggests that 5-ALA could be used as antiviral drug candidate to treat Omicron variant infected patients.

2.
Microorganisms ; 10(1)2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1613908

ABSTRACT

In the initial phase of the novel coronavirus disease (COVID-19) pandemic, a large-scale cluster on the cruise ship Diamond Princess (DP) emerged in Japan. Genetic analysis of the DP strains has provided important information for elucidating the possible transmission process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on a cruise ship. However, genome-based analyses of SARS-CoV-2 detected in large-scale cruise ship clusters other than the DP cluster have rarely been reported. In the present study, whole-genome sequences of 94 SARS-CoV-2 strains detected in the second large cruise ship cluster, which emerged on the Costa Atlantica (CA) in Japan, were characterized to understand the evolution of the virus in a crowded and confined place. Phylogenetic and haplotype network analysis indicated that the CA strains were derived from a common ancestral strain introduced on the CA cruise ship and spread in a superspreading event-like manner, resulting in several mutations that might have affected viral characteristics, including the P681H substitution in the spike protein. Moreover, there were significant genetic distances between CA strains and other strains isolated in different environments, such as cities under lockdown. These results provide new insights into the unique evolution patterns of SARS-CoV-2 in the CA cruise ship cluster.

3.
Trop Med Health ; 50(1): 6, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1613261

ABSTRACT

BACKGROUND: Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to emerge in 2020 and have been spreading globally during the coronavirus disease 2019 (COVID-19) pandemic. Despite the presence of different COVID-19 vaccines, the discovery of effective antiviral therapeutics for the treatment of patients infected with SARS-CoV-2 are still urgently needed. A natural amino acid, 5-aminolevulinic acid (5-ALA), has exhibited both antiviral and anti-inflammatory activities. In a previous study, we demonstrated an in vitro antiviral effect of 5-ALA against SARS-CoV-2 infection without significant cytotoxicity. In the present study, we sought to investigate whether 5-ALA with or without sodium ferrous citrate (SFC) can inhibit in vitro both the original SARS-CoV-2 Wuhan strain and its variants, including the Alpha, Beta, Gamma and Delta strains. METHODS: The antiviral activity of ALA with or without SFC was determined in Vero-E6 cell. The virus inhibition was quantified by real time RT-PCR. RESULTS: Co-administration of 5-ALA and SFC inhibited the Wuhan, Alpha and Delta variants of SARS-CoV-2 with IC50 values of 235, 173 and 397 µM, respectively, and the Beta and Gamma variants with IC50 values of 1311 and 1516 µM. CONCLUSION: Our study suggests that 5-ALA with SFC warrants accelerated clinical evaluation as an antiviral drug candidate for treating patients infected with SARS-CoV-2 variants.

4.
Biochem Biophys Res Commun ; 545: 203-207, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1068871

ABSTRACT

The current COVID-19 pandemic requires urgent development of effective therapeutics. 5-amino levulinic acid (5-ALA) is a naturally synthesized amino acid and has been used for multiple purposes including as an anticancer therapy and as a dietary supplement due to its high bioavailability. In this study, we demonstrated that 5-ALA treatment potently inhibited infection of SARS-CoV-2, a causative agent of COVID-19, in cell culture. The antiviral effects could be detected in both human and non-human cells, without significant cytotoxicity. Therefore, 5-ALA is worth to be further investigated as an antiviral drug candidate for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Levulinic Acids/pharmacology , Animals , Antiviral Agents/administration & dosage , COVID-19/prevention & control , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Citric Acid , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Ferrous Compounds/pharmacology , Humans , Levulinic Acids/administration & dosage , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL